
Liza Program UI Compiler Manual v1.8.2

Mike Gerwitz, RT Specialty Buffalo

This manual is for Liza Program UI Compiler, version 1.8.2.

Copyright c© 2017 R-T Specialty, LLC.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

1

This manual contains inline notes for developers of Liza Program UI Compiler.1 For an
index of notes, see [Developer Notes Index], page 25.

Location of Liza Program UI Compiler source code is unknown. Source cross-references
have been disabled.2

1 To disable for user documentation, pass --disable-devnotes to configure.
2 To enable source code cross-references, provide the URI to the root (as you want it to be seen in the

manual) via --with-srcuri=<uri> to configure.

i

Table of Contents

1 Program XML . 2

2 Compilation . 3
2.1 Compilation Phases . 3

2.1.1 Serialization Phase . 3

3 Metadata . 4
3.1 Metadata Compilation . 4

Appendix A Utility Functions and Templates
. 6

A.1 Serialization . 6
A.1.1 Auto-Generating Structures . 8
A.1.2 JSON Transformation . 12

A.1.2.1 Array Serialization . 13
A.1.2.2 Dictionary Serialization . 14
A.1.2.3 Miscellaneous . 15

Appendix B GNU Free Documentation License
. 16

Concept Index . 24

Developer Notes Index . 25

Chapter 1: Program XML 2

1 Program XML

The information here is lacking. Maybe you can help?

Chapter 2: Compilation 3

2 Compilation

The information here is lacking. Maybe you can help?

2.1 Compilation Phases

The information here is lacking. Maybe you can help?

This system has maintenance concerns.1

The compiler phases are poorly defined and scattered at present; this section will be
updated as portions of the system are touched and refactored to aid in grokking the changes.

Serialization
Nearly all data defined in the Program XML (see Chapter 1 [Program XML],
page 2) are serialized into JavaScript for runtime.

2.1.1 Serialization Phase

The information here is lacking. Maybe you can help?

See Section A.1 [Serialization], page 6.

1 The compiler phases as they stand today are ill defined, scattered, and possibly bordering on nonsensical.

Chapter 3: Metadata 4

3 Metadata

This system is rudimentary and subject to change.

Document metadata are metadata stored outside of the bucket that describes certain
aspects of the document.1 This should be used in place of a bucket field any time the client
has no business knowing about the data.

Such metadata are defined within the Program XML(see Chapter 1 [Program XML],
page 2) with the ‘meta’ node:

<meta>

<field id="bound" desc="Whether quote has been bound" />

</meta>

Figure 3.1: Defining document metadata within the Program XML

There is not currently any way to assign type information to the field.2 These fields are
not intended to be presented to the user as questions are— internal systems are responsible
for populating the data. The field description ‘@desc’ is intended for both documentation
and debugging/administrative utilities.

3.1 Metadata Compilation

Document metadata are only serialized for later use during the serialization phase (see
Section 2.1.1 [Serialization Phase], page 3):

[match]luic:serialize on lv:meta
Serialize document metadata.

<template mode="luic:serialize" priority="5" match="lv:meta">

<sequence select="st:dict-from-keyed-elements(’id’, lv:field, luic:field-meta())" />

</template>

When child nodes of ‘lv:field’ are encountered, the function luic:field-meta will be
applied to the field containing those childen:

[function]element(st:item) luic:field-meta (field as element(lv:field))
xmlns:luic="http://www.lovullo.com/liza/program/compiler"

Process nested field data.

This function is applied within the context of a dictionary, so we need only return an
item for it to be merged with the containing dictionary.

Definition:

<function name="luic:field-meta" as="element(st:item)">

<param name="field" as="element(lv:field)" />

<variable name="data" as="element(lv:data)?" select="$field/lv:data" />

<variable name="maps" as="element(lv:map)*" select="$data/lv:map" />

1 Terminology note: “document” and “quote” are the same thing; the latter is transitioning to the former
for generality.

2 There ought to be; there just isn’t yet.

Chapter 3: Metadata 5

<!-- only generate map from value node if dapi ref exists -->

<variable name="value-map" as="element(st:item)?" select="if ($data) then st:item($data/lv:value/@from, $field/@id) else ()" />

<variable name="mapsrc-dict" as="element(st:dict)" select="st:dict(st:items-from-attrs($data/@*[not(local-name() = ’source’)]))" />

<variable name="mapdest-dict" as="element(st:dict)" select="st:dict(($value-map, st:items-from-keyed-elements(’into’, ’from’, $maps)))" />

<sequence select="st:item(st:dict((st:item($data/@source, ’name’), st:item($data/lv:value/@from, ’value’), st:item($mapsrc-dict, ’mapsrc’), st:item($mapdest-dict, ’mapdest’))), ’dapi’)" />

</function>

Appendix A: Utility Functions and Templates 6

Appendix A Utility Functions and Templates

This appendix contains information about various functions and templates that are used
throughout the system, but aren’t well introduced at any point in the main text.

A.1 Serialization

Liza Program UI Compiler uses a primitive API for representing and serializing objects,
most notably JSON (see Section A.1.2 [JSON Transformation], page 12). This avoids having
to handle string generation (and couple with an implementation) in various systems.

[variable]xs:QName struct:error-qname ()
xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Definition:

<variable name="struct:error-qname" as="xs:QName" select="QName(’http://www.lovullo.com/liza/proguic/util/struct/error’, ’err:BADSTRUCT’)" />

An array is an untyped list of items. Usually, this provides O(n) lookups. It is ideal for
linear processing of data.

The term “array” is abused in certain languages; if you are looking for a key/value store,
use [struct-dict], page 7.

[function]element(struct:array) struct:array ()
xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Generate an empty array.

Definition:

<function name="struct:array" as="element(struct:array)">

<struct:array />

</function>

[function]element(struct:array) struct:array (values as element(
struct:item)*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Generate an untyped array of values.

Arrays must contain only ‘struct:item’ elements, but unlike dictionaries, they must
not contain a ‘@key’.

Definition:

<function name="struct:array" as="element(struct:array)">

<param name="values" as="element(struct:item)*" />

<struct:array>

<sequence select="$values" />

</struct:array>

</function>

A dictionary is a key/value store. Like arrays, dictionaries contain items, but they are
indexed by keys. Usually, languages implement this as a hash table, providing O(1) lookups.

Appendix A: Utility Functions and Templates 7

[function]element(struct:dict) struct:dict ()
xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Create an empty dictionary.

Definition:

<function name="struct:dict" as="element(struct:dict)">

<struct:dict />

</function>

[function]element(struct:dict) struct:dict (values as element(struct:item
)*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Create a dictionary of values.

This is a key-value store containing only ‘struct:item’ elements with ‘@key’ at-
tributes (see [struct:item#2], page 7).

Definition:

<function name="struct:dict" as="element(struct:dict)">

<param name="values" as="element(struct:item)*" />

<struct:dict>

<sequence select="$values" />

</struct:dict>

</function>

An item can be either keyed or unkeyed: the former is suitable only for dictionaries,
while the latter is suitable only for arrays.

Item type metadata should be added; otherwise, we can only serialize as a string.

[function]element(struct:item) struct:item (value as xs:sequence*, id as
xs:string)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Associate a value with a key in a dictionary.

A key value may be a primitive value or another structure. Keyed items must be
children of a dictionary (see [struct:dict], page 7).

Attribute values are converted into strings.

Definition:

<function name="struct:item" as="element(struct:item)">

<param name="value" />

<param name="id" as="xs:string" />

<struct:item key="{$id}">

<sequence select="if ($value instance of attribute()) then string($value) else $value" />

</struct:item>

</function>

Appendix A: Utility Functions and Templates 8

[function]element(struct:item) struct:item (value as xs:sequence*)
xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Create a keyless item.

A key value may be a primitive value or another structure. Keyless items must be
children of a array (see [struct:array], page 6).

Attribute values are converted into strings.

Definition:

<function name="struct:item" as="element(struct:item)">

<param name="value" />

<struct:item>

<sequence select="if ($value instance of attribute()) then string($value) else $value" />

</struct:item>

</function>

Since deriving item values from attributes is common, they will automatically be con-
vered into strings.1

A.1.1 Auto-Generating Structures

It’s common (and natural) to want to serialize key/value pairs from attributes. Two func-
tions provide this convenience:

[function]element(struct:item)* struct:items-from-attrs (attrs as
attribute()*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Generate keys from attributes.

A key/value pair will be created for each attribute in attrs using the attribute’s local
name as the key. Whitespace in attribute values will be normalized.

Definition:

<function name="struct:items-from-attrs" as="element(struct:item)*">

<param name="attrs" as="attribute()*" />

<sequence select="for $attr in $attrs return struct:item(normalize-space($attr), $attr/local-name())" />

</function>

[function]element(struct:dict) struct:dict-from-attrs (element as
element())

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Convert an element into a dictinary using its attributes as key/value pairs.

The name of the element is not used. The attributes of the node are passed to
[struct:item], page 8.

Definition:

1 Really, it makes no sense to permit attributes, since that will result in the attribute being assigned to
the ‘struct:item’ itself, which does not make any sense (and could corrupt internal state depending on
what attribute was set).

Appendix A: Utility Functions and Templates 9

<function name="struct:dict-from-attrs" as="element(struct:dict)">

<param name="element" as="element()" />

<sequence select="struct:dict(struct:items-from-attrs($element/@*))" />

</function>

[function]element(struct:array) struct:dict-array-from-elements
(elements as element()*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Convert a sequence of elements into an array of dictionaries using element attributes
as dictionary key/value pairs.

Each element is processed using [struct:dict-from-attrs], page 8.

Definition:

<function name="struct:dict-array-from-elements" as="element(struct:array)">

<param name="elements" as="element()*" />

<sequence select="struct:array(for $element in $elements return struct:item(struct:dict-from-attrs($element)))" />

</function>

Another function allows allows using one of the attibutes as a key to recursively generate
a dictionary of multiple elements, provided that those elements have unquie keys.

[function]element(struct:dict) struct:dict-from-keyed-elements (key
as xs:string, elements as element()*, recf as item()*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Recurisvely generate dictionary using an attribute as a key.

This generates a new dictionary with n entires where the value of the key is another
dictionary containing the key/value representation of the remaining attributes, where
n = count($element).

If $recf is non-empty, it will be applied to each element that generates an item in the
parent dictionary; this allows for recursive processing. The function is applied within
the context of the dictionary and should therefore return one or more ‘struct:item’s.

Beware: the given key $key is compared only by local-name.

No check is performed to ensure they all keys are unique in the toplevel dictionary.
Conflicts result in undefined behavior dependent on the serializer. For example, when
serialized to JSON, the latter key takes precedence and the former keys are overwrit-
ten.

Should probably handle more gracefully a situation where the key attribute does not
exist on one of the elements.

Definition:

<function name="struct:dict-from-keyed-elements" as="element(struct:dict)">

<param name="key" as="xs:string" />

<param name="elements" as="element()*" />

<param name="recf" as="item()*" />

Appendix A: Utility Functions and Templates 10

<sequence select="struct:dict(for $element in $elements return struct:item(struct:dict((struct:items-from-attrs($element/@*[not(local-name() = $key)]), if ($recf) then f:apply($recf, $element) else ())), $element/@*[local-name() = $key]))" />

</function>

[function]element(struct:dict) struct:dict-from-keyed-elements (key
as xs:string, elements as element()*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Recurisvely generate dictionary using an attribute as a key.

This two-argument version simply invokes [struct:dict-from-keyed-elements#3],
page 9 without a child function.

Definition:

<function name="struct:dict-from-keyed-elements" as="element(struct:dict)">

<param name="key" as="xs:string" />

<param name="elements" as="element()*" />

<sequence select="struct:dict-from-keyed-elements($key, $elements, ())" />

</function>

An example usage of this function is provided in Figure A.1.

Appendix A: Utility Functions and Templates 11

Given some document:

<meta>

<field id="foo" desc="Has nested" type="string">

<nested name="n1" />

</field>

<field id="bar" desc="No nested" type="boolean" />

</meta>

With function:

<function name="nestedf" as="element(struct:item)+">

<param name="field" as="element(field)" />

<sequence select="struct:item($field/nested/@name, ’nestedf’)" />

</function>

Transformed with:

<sequence select="struct:dict-from-keyed-elements(’id’, meta, nestedf())" />

Results in:

<struct:dict>

<struct:item key="foo">

<struct:dict>

<struct:item key="desc">Has nested</struct:item>

<struct:item key="type">string</struct:item>

<struct:item key="nestedf">n1</struct:item>

</struct:dict>

</struct:item>

<struct:item key="bar">

<struct:dict>

<struct:item key="desc">No nested</struct:item>

<struct:item key="type">boolean</struct:item>

<struct:item key="nestedf"></struct:item>

</struct:dict>

</struct:item>

</struct:dict>

Figure A.1: Generating a dictionary from keyed elements.

Extracting key/value pairs from element attributes is also a common operation:

[function]element(struct:item)* struct:items-from-keyed-elements
(key as xs:string, value as xs:string, elements as element()*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Generate keyed items for each element in $elements using one attribute $key as the
key and another attribute $value as the value.

Beware: the given key $key is compared only by local-name.

Appendix A: Utility Functions and Templates 12

The arguments are ordered such that this is useful as a partially applied function for
processing lists of elements with lambdas.

Definition:

<function name="struct:items-from-keyed-elements" as="element(struct:item)*">

<param name="key" as="xs:string" />

<param name="value" as="xs:string" />

<param name="elements" as="element()*" />

<sequence select="for $element in $elements return struct:item($element/@*[local-name() = $value], $element/@*[local-name() = $key])" />

</function>

When generating dictionary items in a loop from numerous elements, it can be incon-
venient keeping track of unique keys. If the goal is to create an array of items grouped by
unique keys, you’re in luck:

[function]element(struct:item)* struct:group-items-by-key (items as
element(struct:item)*)

xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Group keyed items into arrays indexed by their respective keys.

Every unique key k will result in an array— indexed by k— containing each respective
item.

Items without keys will not be retained!

Definition:

<function name="struct:group-items-by-key" as="element(struct:item)*">

<param name="items" as="element(struct:item)*" />

<for-each-group select="$items" group-by="@key">

<struct:item key="{current-grouping-key()}">

<struct:array>

<sequence select="for $item in current-group() return struct:item($item/node())" />

</struct:array>

</struct:item>

</for-each-group>

</function>

A.1.2 JSON Transformation

The recommended way to serialize a structure as JSON is to apply [struct:to-json],
page 12.

[function]xs:string struct:to-json (struct as element())
xmlns:struct="http://www.lovullo.com/liza/proguic/util/struct"

Transform structure into JSON.

Definition:

<function name="struct:to-json" as="xs:string">

<param name="struct" as="element()" />

Appendix A: Utility Functions and Templates 13

<variable name="result" as="xs:string*">

<apply-templates mode="struct:to-json" select="$struct" />

</variable>

<!-- force to a single string rather than a sequence of them -->

<sequence select="string-join($result, ’’)" />

</function>

We assume that the structure is already well-formed;2 this makes serialization a trivial
task.

We proceed by recursive descent. Let’s start with arrays.

A.1.2.1 Array Serialization

An array simply encapsulates items in square brackets:

[match]struct:to-json on struct:array
Transform array into JSON.

<template mode="struct:to-json" priority="5" match="struct:array">

<text>[</text>

<apply-templates mode="struct:to-json" select="node()" />

<text>]</text>

</template>

Items are simple too, since we don’t have to deal with keys. If the item contains an
element, we consider it to be a nested structure and recurse:

[match]struct:to-json on struct:item[element()]
Transform nested structure into JSON.

<template mode="struct:to-json" priority="5" match="struct:item[element()]">

<sequence select="struct:to-json(./element())" />

<if test="following-sibling::struct:item">

<sequence select="’,’" />

</if>

</template>

Otherwise, we consider it to be a primitive. At this point, items are untyped, so we have
no choice but to serialize as a string:

[match]struct:to-json on struct:item
Transform primitive data into JSON.

Until items are typed, we have no choice but to serialize all items as strings.

2 That might not necessarily be assured by this implementation, but validations belong there (see
Section A.1 [Serialization], page 6), not here.

Appendix A: Utility Functions and Templates 14

<template mode="struct:to-json" priority="4" match="struct:item">

<sequence select="concat(’"’, _struct:json-escape-str(.), ’"’)" />

<if test="following-sibling::struct:item">

<sequence select="’,’" />

</if>

</template>

Note that we took care to escape the provided value so that double quotes do not break
out of the serialized string.

[function]xs:string _struct:json-escape-str (str as xs:string)
xmlns:_struct="http://www.lovullo.com/liza/proguic/util/struct/_priv"

Escape double quotes within a string.

Definition:

<function name="_struct:json-escape-str" as="xs:string">

<param name="str" as="xs:string" />

<sequence select="replace($str, ’"’, ’\\"’)" />

</function>

A.1.2.2 Dictionary Serialization

Dictionaries are serialized similarly. In JSON, we represent them as objects:

[match]struct:to-json on struct:dict
Transform dictionary into JSON object.

<template mode="struct:to-json" priority="5" match="struct:dict">

<text>{</text>

<apply-templates mode="struct:to-json-dict" select="node()" />

<text>}</text>

</template>

Since dictionaries are key/value, every item needs to be assigned to a field on the object,
where field name is specified by ‘@key’. Otherwise, serialization proceeds the same way as
arrays:

[match]struct:to-json-dict on struct:item[@key]
Transform dictionary key into JSON field on an object.

The field name is specified by ‘struct:item/@key’. Until items are typed, we have
no choice but to serialize all items as strings.

<template mode="struct:to-json-dict" priority="5" match="struct:item[@key]">

<sequence select="concat(’"’, _struct:json-escape-str(@key), ’":’)" />

<apply-templates mode="struct:to-json" select="." />

</template>

Note that we escape the field.

At a lower priority, we have a catch-all that will fail if it encounters a non-keyed structure:

Appendix A: Utility Functions and Templates 15

[match]struct:to-json-dict on node()
Error on unrecognized structures during dictionary JSON transformation.

<template mode="struct:to-json-dict" priority="1" match="node()">

<sequence select="error($struct:error-qname, concat(’Unexpected non-key structure: ’, name(.)), .)" />

</template>

A.1.2.3 Miscellaneous

We use comments in test cases to annotate structures. It’s unlikely that they will be used
in practice, but since they are nodes too, we need to make sure we don’t consider them to
be errors:

[match]struct:to-json on comment()
Ignore comments during processing.

<template mode="struct:to-json" priority="2" match="comment()">

</template>

Everything else we don’t know about during processing results in an error:

[match]struct:to-json on node()
Error on unrecognized structures during JSON transformation.

<template mode="struct:to-json" priority="1" match="node()">

<sequence select="error($struct:error-qname, concat(’Unexpected structure: ’, string(.)), .)" />

</template>

And we’re done.

Appendix B: GNU Free Documentation License 16

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software
Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix B: GNU Free Documentation License 17

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: GNU Free Documentation License 18

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix B: GNU Free Documentation License 19

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 20

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix B: GNU Free Documentation License 21

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 22

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 23

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index 24

Concept Index

A
Array . 6

C
Compilation Phases . 3

D
Dictionary . 6

I
Item . 7

J
JSON . 12

M
Metadata, Document . 4

S
Serialization . 3, 6

T
TODO, Missing Docs . 2, 3

Developer Notes Index 25

Developer Notes Index

Maintenance Concern . 3 Missing Docs . 2, 3

	Program XML
	Compilation
	Compilation Phases
	Serialization Phase

	Metadata
	Metadata Compilation

	Utility Functions and Templates
	Serialization
	Auto-Generating Structures
	JSON Transformation
	Array Serialization
	Dictionary Serialization
	Miscellaneous

	GNU Free Documentation License
	Concept Index
	Developer Notes Index

